TEXTS:

Evert, Ray F. and Susan E. Eichhorn. 2013. Biology of Plants. Eighth
Edition. W. H. Freeman \& Co. ISBN: 1-4641-1928-7
Evert, Ray F., Susan E. Eichhorn, and Joy B. Perry. 2013. Laboratory Topics in Botany. Seventh Edition. W.H. Freeman \& Co. ISBN: 0-7167-6205-6

Plotkin, Mark J. 1993. Tales of a Shaman's Apprentice. Penguin Books. ISBN: 01401.2991

OPTIONAL:

Leopold, Aldo. 1949. A Sand County Almanac. Balantine Books. This book is optional. You can purchase it in the bookstore for about $\$ 12.00$; however, there are several copies on reserve in Reeves Library. We will cover the last chapter toward the end of the semester.

COURSE OBJECTIVES:

Biology 119 is an introductory course in plant science designed to introduce you to plants as living organisms, their physiological functions, their roles in natural ecosystems, and how humans use them. We will examine the importance of plants in our every day lives. Not only do plants provide us with food and fiber, but they also afford us also a broad array of important medicines, pharmaceuticals and pain killing drugs. Certain plants produce potent anticancer drugs, and it is likely that drugs from other plants will be useful in treating AIDS. Ironically, the ecosystems where these plants are found are at risk and many of them may not survive the next two to three decades. We will discuss the rapid loss of biodiversity and its potential effects on our lives.

Another goal of the course is to examine the historical and cultural significance of plants, particularly the pivotal role of plant domestication in the rise of civilization.

We will see how plants have been used as experimental organisms to solve important biological problems. We will explore the relationships between structure and function in higher plants, especially photosynthesis, and we will see how the photosynthetic mechanism responds to environmental changes. We will also examine how plants control their growth and development and how the control mechanisms respond to seasonal changes and pressure from herbivores. We may discuss some of the exciting new advances in plant biotechnology to see how genetic manipulation of important plant species is accomplished. Finally, we will examine representative
examples of major plant divisions to see how they reproduce. Based on differences in reproductive patterns we will discuss some of the major trends in plant evolution.

ATTENDANCE:

Plan to attend all regular classes, laboratories, and exams. Missing an exam means that the exam will be given a score of zero and averaged with other test grades for the semester. In the case where an exam is missed for a valid reason, the exam will not count against the final average and the remaining test scores will be averaged.

GRADING:

Grades are based on lecture exams, laboratory quizzes, a laboratory practical exam, and a final exam.

	Point Value	Percentage of Final Grade
Three (3) hour exams (100 points each)	300	33.3%
Three (3) laboratory quizzes (60 points each)	180	20.0%
One (1) laboratory practical exam	150	16.7%
Final exam (comprehensive)	$\underline{270}$	$\underline{30.0 \%}$
	900	100.0%

Letter grades are assigned using 10-point intervals:

$$
90-100 \%=\mathrm{A}, 80-89 \%=\mathrm{B}, 70-79 \%=\mathrm{C}, 60-69 \%=\mathrm{D},<60 \%=\mathrm{F}
$$

ACADEMIC HONESTY:

The instructor adheres to the policy statement on academic integrity outlined in the current Student Handbook.

Cheating on an exam or a laboratory quiz will result in a grade of zero for the exam or quiz.

Do not bring cell phones to class on days when exams are scheduled, or to the laboratory on days when a lab quiz is to be given. The instructor is singularly unforgiving about this.

EXTRA CREDIT:

For those who wish to do so there are extra credit films that may be viewed in the Reeves Library. Each is worth 10 points. If you elect to do this, you must advise the instructor in advance and then go to Reeves Library to view the film. Some of these are available as CDs that you can check out and view on you personal computer. Others are on VHS video tapes. To receive credit you will need to turn in a one page written abstract (not an email) to the instructor summarizing the central ideas in the film. Your summary should be turned in within one week of viewing the film. All video summaries must be turned in to the instructor on or before Friday 6 December. Video summaries are not accepted during final exam week.

You may select up to two from the following titles (excluding any which we may have used in class or laboratory:

Aldo Leopold's Wilderness
AMATE: The Great Fig Tree
Deep Jungle
Ecology of the Forest
Faces of the Rain Forest
Intimate Strangers: Symbiosis
Manu: Peru's Hidden Rainforest
Natural Connections
Pollination
Pollination: The Insect Connection
Queen of Trees ${ }^{1}$
Race to Save the Planet 5: Remnants of Eden
Sexual Encounters of the Floral Kind
Spirit of the Rainforest

Students who wish to request accommodations in this class for a disability shoulde contact the Academic Support center, located on the first floor of Monocacy Hall (extension 1401). Accommodations cannot be provided until authorization is received from the Academic Support Center.

[^0]
LECTURE SCHEDULE

Mon. 31 Aug. Orientation; "What is a seed?"
Wed. 2 Sept. Seed structure, germination, and seed ecology
Fri. 4 Sept. Seedling development and its control
Mon. 7 Sept.
Wed. 9 Sept. Flowers and floral anatomy
Fri. $\quad 11$ Sept. How do flowering plants reproduce?
Mon. 14 Sept. How flowering plants reproduce
Wed. 16 Sept. Pollination biology, the essence of mutualism
Fri. 18 Sept. Plant ecology
Mon. 21 Sept. Plant ecology
Wed. 23 Sept. Plant ecology
Fri. 25 Sept. FIRST HOUR EXAM
Mon. 28 Sept. Tropical forests exemplify the principles of ecosystem structure
Wed. 30 Sept. Tropical forests
Fri. 2 Oct. Molecular composition of plant cells
Mon. $\quad 5$ Oct. How do plants defend themselves against herbivores?
Wed. 7 Oct. Enzymes and factors affecting their action
Fri. 9 Oct. The structure of plant cells
(MID TERM)
Sat. 10 Oct. - Tue. 13 Oct. FALL RECESS
Wed. 14 Oct. The structure of plant cells
Fri. 16 Oct. How do plant cells divide? Mitosis and the concept of totipotency. Totipotent cells can be used to clone useful plants.

Mon. 19 Oct. Meiosis is all about sex. Why is sexual reproduction important in the evolution species? Can some plants survive without sex?
Wed. 21 Oct. Cells, differentiation, and plant tissues
Fri. 23 Oct. Plant structure: Stems and leaves
Mon. 26 Oct. SECOND HOUR EXAM
Wed. 28 Oct. Plant structure: Leaves and roots
Fri. 30 Oct. Photosynthesis: "Harvesting the Sun"
Mon. 2 Nov. The light reactions of photosynthesis
Wed. 4 Nov. $\mathrm{C}_{3}, \mathrm{C}_{4}$, and CAM plants
Fri. 6 Nov. Alternation of generations: the fern life cycle (fern allies if time allows)

Mon. 9 Nov. Moss life cycle as an example of bryophytes (liverworts if time permits)
Wed. 11 Nov. Liverworts
Fri. 13 Nov. The pine, a gymnosperm
Mon. 16 Nov. Plant growth and development
Wed. 18 Nov. Growth and development: hormones and tropisms
Fri. 20 Nov. Growth and development: How do plants see light? Phytochromes
Mon. 23 Nov. THIRD HOUR EXAM
Wed. 25 Nov. - Sun. 29 Nov. THANKSGIVING VACATION
Mon. 30 Nov. Growth and development: photoperiodism and flowering
Wed. 2 Dec. How are plants important to us? (Or, what might life be like without them?)
Fri. 4 Dec.
Mon. 7 Dec. Useful plants and plant products
Wed. 9 Dec. Biodiversity: How many species are present on earth, and how fast are they disappearing? Why should we worry about species extinction?
Fri. $\quad 11$ Dec. Biodiversity (Last day of classes)

Tue. 15 Dec. FINAL EXAM $1: 30 \mathrm{pm}$

LABORATORY SCHEDULE

Many of the laboratory exercises come from the lab manual by Evert and Eichhorn. Others are based on handouts from the instructor. Lab exercises are closely related to lecture topics, so plan to bring your lecture notes and text book to the lab. You will have occasion to use both frequently. Laboratory assignments should be read BEFORE coming to the lab. Three lab quizzes, each about 15 minutes, will be given during the semester. A practical exam emphasizing structure and function is scheduled for the last lab meeting.
Date Subject Material
2, 3 Sept. \quad Start Brassica rapa seedlings \& fern gametophyte cultures
Assignments
2, 4 Sept. The light microscope Plant cells
9, 10 Sept. FIRST LAB QUIZSeeds, germination, and seedling developmentThe structure of flowers
Topic 1-1Topic 4-1
HandoutTopic 3-1Topic 20-2 to 20-6
16, 17 Sept. Field Trip
23, 24 Sept. Plant water relations: determination of water Handout potential of potato tuber tissue. Relevance of water potential to stomate regulation, sugar transport, and water movement in plants30 Sept. Field Trip ${ }^{2}$1 Oct.
7, 8 Oct. Enzyme lab: extraction and assay of catalase Handout from spinach leaves
Sat. 10 Oct. - Tue. 13 Oct. FALL RECESS
14,15 Oct. SECOND LAB QUIZ
Is catalase found throughout the plant?Handout

[^1]21,23 Oct. Mitosis: root meristems

Topic 5-1Meiosis28, 29 Oct. Three major tissue systems of plants and the cellswhich comprise themStems of dicots and monocots4, 5 Nov. Leaves: dicots, monocots, C_{3} and C_{4}, abscissionSecondary growth of stemsRoots: root systems, primary growth, origin ofsecoDedc.ndary roots, dicot \& monocot roots
11, 12 Nov. THIRD LAB QUIZ

11, 12 Nov. THIRD LAB QUIZThe fern life cycle: an example of alternationTopic 16-4 to $16-9$of generations with dominant sporophytesMosses have dominant gametophyte generations
8, 19 Nov. Marchantia, a liverwortPine life cycle: an example of the gymnosperms

Topic 9-1
Topic 3-3, 3-4
Topic 21-1
Topic 23-1
Topic 24-1
Topic 25-1
Topic 22-1
The fern life cycle: an example of alternation
Topic 16-4 to 16-9
Mosses have dominant gametophyte generations
Topic 14-5 to 14-7
8,19 Nov. Marchantia, a liverwort
Pine life cycle: an example of the gymnosperms
Topic 14-1 to 14-4
Topic 17-1 to 17-7

Sat. 25 Nov. - Sun. 29 Nov. THANKSGIVING RECESS
2, 3 Dec.
9,10 Dec. PRACTICAL EXAM

SUMMARY OF SEMESTER DEADLINES

Wed. Thurs. 11, 12 September First lab quiz
Friday 20 September First hour exam
Wed. Thurs. 16, 17 October Second lab quiz
Monday 21 October Second hour exam
Wed. Thurs. 13, 14 November Third lab quiz
Monday 18 November \quad Third hour exam
Wed. Thurs. 4,5 December Laboratory practical exam
Tuesday $\quad 10$ December \quad Final exam (1:30 pm)

TIME LINE FOR READINGS IN TALES OF A SHAMAN’S APPRENTICE

(Plotkin, 1993)
Topics in Plotkin's book will be discussed at several points in lecture between 23 and 30 September, so you should plan to read the book according to the following time line. We will also use it between 22 November and 4 December in discussions on ethnobotany and biodiversity. In any event, be certain to complete the book prior to Friday $\mathbf{1 8}$ October since it will be included on the second exam.

Assignment

Foreword
Chapters 1 \& 2
Chapters 3 \& 4
Chapters 5,6 \& 7
Chapters 8 \& 9

Completion Date

Friday 6 September

Friday 13 September
Wednesday 18 September
Wednesday 24 September

LIBRARY REFERENCE MATERIALS ON RESERVE

When you read the assignments in these books, prepare a short, one or two paragraph summary of each and incorporate it into your lecture notes. These reading assignments will be included on exams.

Judson, Olivia, 2002. Dr. Tatiana's Sex Advice to All Creation: The Definitive Guide to the Evolutionary Biology of Sex. Metropolitan Books. Henry Holt and Co.
Chapter 4: Swords or Pistols (read pp. 60-65 on fig wasps)
Leopold, Aldo. 1948. A Sand County Almanac. Ballantine Books. Read the last chapter, The Land Ethic (pp. 237-279).

Western, David and Mary Pearl. 1989. Conservation for the Twenty-first Century. Oxford University Press. Two chapters will be assigned. See the list of reading assignments.

SEMESTER READING ASSIGNMENTS

(Topics arranged in the order we will cover them. From Evert and Eichhorn. 2013. 8th Edition)
Reading assignments are selected to supplement lecture topics and should be read BEFORE coming to class on the day that the topics are to be discussed. Most assignments are from the textbook. A few are from reference books on reserve in the library. For topics marked with an asterisk (*) there will be additional reading assignments in the form of handouts in class.

Lecture Topics
Assignments ${ }^{3}$

Orientation
Seeds, germination, and the development of the plant body

Flowers, floral anatomy, and reproduction in flowering plants

Pollination biology

Plant ecology ${ }^{4}$
Biomes and global ecology
Molecular components of plant cells*
How do plants defend themselves against herbivores?

Enzymes and factors which affect their action* (especially pp 99-106)

EC, Ch. 1, pp. 1-15
EC, Ch 22, pp. 530-537

EC, Ch. 19, pp. 457-476
EC, Ch. 20, pp. 477-500
EC, Ch, 22, pp. 526-530
EC, Ch. 20, pp. 487-491
Judson, O. Ch. 4. Swords or Pistols
(pp. 60-65)
EC, Ch. 31, Ecology (on the Web)
EC, Ch. 32, Global ecology (Web)
EC, Ch. 2, pp 18-37
EC, Ch. 2. Secondary Metabolites pp. 30-35
EC, Ch. 20. Biochemical Evolution
pp. 497-498
Handouts:
Anti-herbivore Defenses in Tropical Plants
The night moves of pregnant Moths

EC, Ch. 5, pp. 94-106

[^2]Structure of plant cells*

Mitosis*
Totipotency and its importance in plant biotechnology
(In particular note the essay on totipotency. Top of p. 202)
Meiosis*
(Note the basis for cytoplasmic inheritance, p. 168)
Asexual reproduction
Cells, differentiation, and plant tissues
Note in particular the structures of tracheary elements of the xylem, and sieve cells, companion cells, P -protein and the forisome in the phloem.

Stems*
Leaves (including stem \& leaf modifications)*
Secondary growth in stems
Roots*

Photosynthesis*
This is an especially important chapter, and it is integral to the mission of the course. Look over the study questions carefully (pp. 148-149).

Systematics and the diversity of living things
Alternation of generations*
EC, Ch.12, pp. 234-250
EC, Ch. 12, pp. 250-255
(Including Life Cycles \& Diploidy)
EC, Ch. 17, pp. 397-398
(Fig. 17-8)
Lower vascular plants (ferns and fern allies)*
Focus on the fern life cycle as a prototype for this group. Omit the life cycle of Selaginella on pp. 410-411.

Bryophytes*
In this chapter concentrate on the life cycle of mosses (pp. 378-387) and the liverwort Marchantia (pp. 373-377)

EC, Ch. 8, pp. 152-159
EC, Ch. 8, pp. 169-173

EC, Ch 25, pp. 579-589

EC, Ch. 26, pp. 614-635
EC, Ch. 24, pp. 558-578
EC, Ch. 7, pp. 122-149.
EC, Ch. 3, pp. 38-62
EC, Ch. 4, pp. 75-91
EC, Ch. 3, pp. 62-74
EC, Ch. 10, pp. 198-205

EC, Ch. 23, pp. 538-557
pp. 590-613

EC, Ch. 17. pp. 391-429
(pp. 409-429 is the most important)
See the fern life cycle, pp. 422-423)

EC, Ch. 16. pp. 366-390
In particular, the life cycle of mosses (pp. 386-387) and Marchantia (pp. 376-377)

Gymnosperms*
EC, Ch. 18. pp. 430-456
Here the most important part of the chapter is pp. 437-448. Pines will be our only example of gymnosperms (see life cycle on pp. 442-443).

Plant growth and development
Hormones*
How plants respond to their environment (especially phototropism, photoperiodism, and phytochrome)

Why are plants important to us?

Biodiversity and conservation

EC, Ch. 27. pp. 638-659
(Including study questions, p. 659)
EC, Ch. 28. pp. 660-682

Handouts:
Useful Plants and Plant Products
Drugs of Plant Origin
EC, Ch. 21, pp. 501-523 (Read the short essay Origin of Maize, p. 510)

Leopold, last chapter of the book, The Land Ethic, pp. 237-279.
Western and Pearl:
(1) Overview
(2) Overview of Recent Extinctions
(Jared Diamond), pp. 37-41
(3) A Major Extinction Spasm:

Predictable and Inevitable?
(Norman Myers), pp. 42-49

[^0]: ${ }^{1}$ This may not be in Reeves library. If you want to view it, see the instructor for a copy.

[^1]: ${ }^{2}$ If the weather cooperates, this will probably be moved to Saturday 4 October. If so, we will not have lab on Tuesday and Thursday 30 Sept. and Thurs. 2 Oct.

[^2]: 3 EC = Evert and Curtis.
 4 The two chapters on ecology are not in the text. You can download them without charge from the publisher's Web site at www.whfreeman.com/raven8e. Save them as pdf files on your hard drive. You will need Adobe Acrobat v. 3 or higher. The files are fairly large (4.1 and 6.3 MB), so they will take a few minutes to download.

