PHYS222: Modern Physics Spring 2010

Teacher: Dr. Kelly Krieble	Classroom: CHS 107 M,W,F 7:50-8:40
	Th 7:50-8:40
Office: Room 109, Collier Hall of Science	Lab: CHS 107 M 1:15-4:15
Phone: ext. 1437	Office Hours: By appointment
e-mail: krieblek@moravian.edu	

Course Texts: Modern Physics for Scientists and Engineers, 3nd ed., Thornton and Rex. Introduction to Relativity, Kogut An Introduction to Error Analysis, 2nd ed., John R. Taylor

Course Objectives: The primary aim of this course is to provide students with a working knowledge of the concepts leading to the breakdown of classical physics and the emergence of modern quantum theory. The course material follows an historical approach, and contains a substantial experimental and writing component. Students will learn and develop mathematical and physical techniques for solving a wide range of problems. In the laboratory portion of the course students will learn about experimental design and gain experience using a variety of equipment for conducting physical measurements. This course satisfies the Writing Across the Curriculum requirement.

Course Content and Schedule of Topics:

Торіс	Approximate Time Span	Readings
Relativity	4 weeks	Chapter 2
Scattering and diffraction	2 weeks	
a. Photon interactions		
 Bragg diffraction 		
c. Rutherford scattering		
Bohr Theory	1 week	Chapter 4
Quantization	1.5 weeks	Chapter 3
a. X-rays		
b. Franck-Hertz		
c. Wilson-Sommerfeld		
d. Harmonic oscillator		
Wave-Particle Duality	2 weeks	Chapter 5
a. DeBroglie wavelength		
b. Complimentarity		
c. Uncertainty principle		
Quantum numbers	2 weeks	Chapters 6, 7, 8
a. Schroedinger equation		
b. Angular momentum		
c. Energy splitting (Zeeman effect, etc.)		
Elementary particles and conservation laws	1.5 weeks	Chapter 14
Nuclear physics and radioactivity	2 weeks	Chapters 12, 13

Grading Policy:

- A = 90%-100%
- B = 80%-89%
- C = 70%-79%
- D = 60%-69%
- F = below 60%

Assessment:	% Weight
Homework Problems	20
Lab Journal and Reports	20
Paper and Presentation	10
Exams	30
Final Exam	20

Homework Problems:

As illustrated above, the problem sets constitute a significant portion of your grade. Your work on these problem sets, as well as on lab reports and your paper, is subject to the Moravian College Policy on Academic Honesty. Refer to the Student Handbook or ask your instructor if you have any doubts or questions about any submitted work.

Due dates and late policy: Work submitted after the due date will receive a zero.

Labs:

To augment your overall learning experience and provide an experimental aspect to the course, you will be required to perform a lab each week during the term. To instill good laboratory report writing skills, lab reports will be submitted throughout the semester according to a prescribed format that follows the style of popular physics journals, using LaTeX software. Use of the Bedford writing handbook will be encouraged, and a copy will be available in the modern physics lab. Unless otherwise stated, the Physical Review Letters style will be used for all citations.

Week	Experiments:
1	Interferometer
2	Radioisotopes, Shielding, and the MCA
3	Relativistic Energy
4	Coincidence
5	Photoelectric Effect
6	Compton Effect
7	Balmer Series in H and D
8	X-Ray Diffraction
9	Electron diffraction
10	Photon Counting
11	Zeeman Effect
12	TBD - Mossbauer Effect or NMR

Schedule of experiments:

Students will also have the opportunity to peer review each other's work. For each lab report turned in, students must supply a second copy for peer review (comments and suggestions/corrections on grammar, format, content, style, and readability). Both copies will be returned and a revised report will be re-submitted by the student with the lab journal at the end of the semester. All originals and revisions shall be included in the portfolio. The student will also keep a laboratory journal throughout the semester, which includes notes, raw data, and calculations on the experiments performed during the course.

Paper and Presentation:

In addition to the lab reports, throughout the semester students will be researching a topic in physics and will write a formal research paper (approximately 10-15 pages long). Assignments throughout the term will include: selecting a topic, producing a preliminary and final annotated bibliography, rough drafts, and writing the final draft of the paper. A 10-15 minute presentation will be given on this work during the last week of class.

Exams: At least three (in-class) one-hour exams during the semester.

Final comprehensive exam: An exam covering all material introduced during the semester.

Attendance Policy:

Students are expected to come to class, however sometimes issues beyond the student's control arise. Excused absences include but are not limited to medical problems, family emergencies, participation in sporting events, and the like. The instructor reserves the right to lower the student's grade should more than two unexcused absences accrue during the semester.

Good luck in the coming semester. Should you have any comments about the class during the semester, please feel free to discuss them with me.

PHYS222: Modern Physics

Dat	е	Scheduled Topic/Lab
Monday	1/18	Introduction, Galilean Transform Lab #1 – Interferometer
Wednesday	1/20	Michelson-Morley experiment
Thursday	1/21	Einstein's postulates, simultaneity, train paradox
Friday	1/22	Lorentz Transformations
Monday	1/25	Length Contraction and Time Dilation Lab #2 – Radioisotopes, Shielding, MCAs
Wednesday	1/27	Relative Velocity
Thursday	1/28	Problem Session
Friday	1/29	Twin paradox, Space-time diagrams
Monday	2/1	<i>Relativistic momentum and mass-energy</i> Lab #3 – Relativistic Energy
Wednesday	2/3	Collisions
Thursday	2/4	Problem Session
Friday	2/5	Threshold energy
Monday	2/8	Doppler effect, decay, and binding energy <i>Muon decay demo</i> Lab #4 – Coincidence
Wednesday	2/10	J.J Thompson, Millikan, and Planck Oil-drop experiment demo Planck radiation law demo
Thursday	2/11	Problem Session
Friday	2/12	Photoelectric effect
Monday	2/15	Photon interactions Lab - Exam #1 (Relativity) Lab #5 – Photoelectric Effect
Wednesday	2/17	Compton effect
Thursday	2/18	Problem Session
Friday	2/19	Crystal structure

Monday	2/22	Bragg diffraction Lab #6 – Compton Effect
Wednesday	2/24	Rutherford scattering
Thursday	2/25	Problem Session
Friday	2/26	Rutherford scattering
Monday	3/1	Bohr Theory Lab #7 – Balmer Series in H and D
Monday Wednesday	3/1 3/3	
		Lab #7 – Balmer Series in H and D

SPRING BREAK

Monday	3/15	X-rays and energy level quantization Franck-Hertz experiment demo Lab #8 – X-ray diffraction
Wednesday	3/17	Wilson-Sommerfeld quantization
Thursday	3/18	Problem Session
Friday	3/19	De Broglie wavelength
Monday	3/22	Complimentarity Lab - Exam #2 (Particle/Wave Physics) Lab #9 – Electron diffraction
Wednesday	3/24	Phase and group velocity
Thursday	3/25	Problem Session
Friday	3/26	Uncertainty principle
Monday	3/29	Schroedinger equation Lab #10 – Photon Counting
Wednesday	4/1	Infinite square well

Easter Break

Wednesday	4/7	Hydrogen Atom, Angular momentum & quantum numbers
Thursday	4/8	Problem Session
Friday	4/9	Energy splitting and the g factor
Monday	4/12	Zeeman effect Lab #11 – Zeeman Effect
Wednesday	4/14	Anomalous Zeeman effect and Lande g
Thursday	4/15	Problem Session
Friday	4/16	Elementary Particles
Monday	4/19	Conservation Laws Lab - Exam #3 (Quantum Physics) Lab #12 – TBD (Mossbauer or NMR)
Wednesday	4/21	Nuclear Physics
Thursday	4/22	Problem Session
Friday	4/23	Radioactive Decay
Monday	4/26	Fission LAB – paper presentations
Wednesday	4/28	Fusion
Thursday	4/29	Problem Session
Friday	4/30	Semester Review