Biology 192- Heredity and Society Spring 2008

Course description: *Heredity and Society* is an applied human genetics course for non biology majors. It satisfies the F4 LinC graduation requirement. The course includes classical and current topics in human genetics such as single gene and polygenic traits and diseases, chromosomal syndromes, molecular (biochemical) genetics, population genetics, immunogenetics, and cancer genetics. Evaluation will include four unit exams, lecture and laboratory attendance and participation, involvement in case studies, and presentation of a short power point presentation on a selected human genetic disease.

Course information:

Lectures - MWF 4 (11:30 - 12:20 AM) Laboratory - Tuesday (12:45- 3:45 PM) Collier Hall of Science 300

Instructor: Dr. Karen Kurvink Associate Professor of Biology 323 Collier Hall of Science 610-861-1428

Text; HUMAN GENETICS - Concepts and Applications eighth edition by Ricki Lewis 2008

Course goals:

- 1. To investigate historical and current concepts and technologies in human genetics.
- 2. To focus on investigatory laboratory procedures and technologies associated with human genetics.
- 3. To demonstrate the evolutionary 'conservation in design" of humans and other biological organisms.
- 4. To improve student's deductive and articulation skills via computer data base searches, written research assignments, and verbal presentations.

5. To encourage the development of understanding and hopefully of empathy for individuals who have genetically related differences.

Course comments:

- 1. Four unit exams: 100 pts each Exams include short answer, problems, and essay questions.
- Student presentation: 10 minute power point presentation on a selected human genetic syndrome - 100 pts (Note: As soon as you have selected a topic, inform the instructor so it can be added to a "selected topic" list to avoid duplication of

topics.)

- a. identify if the condition is a single gene, polygenic, or
- b. include pattern of inheritance and/or empirical risk data
- c. indicate the population frequency of occurrence
- d. describe the clinical symptoms
- e. indicate if screening procedures are available
- f. what counseling information is important
- g. is gene therapy available
- h. indicate resources OMIM, genetests, NORD, or other data bases
- i. be sure to include a bibliography slide at the end of your presentation
- 3. Attendance and participation grade: It is essential to be involved in the course. (This involvement includes lecture and laboratory attendance.
 - a. Each lab is evaluated based on 20 pts possible points.
 - b. The lecture grade is based on I00 pts possible points.
- 4. Contracting: If you have a specific topic you are interested in studying independently, you may contract for completion of that work with the professor. (NOTE: This is an optional addition to the course.)
- 5. Grade: The course grade is based on earned points/possible points. This percentage grade will translate into the following letter grade:

90-100% = A

80-89%	=	В
70-79%	=	С
60-69%	=	D
below	=	F

TENTATIVE LECTURE SCHEDULE

Date	Lecture Topic	<u>Assignment</u>
Mon Jan14	Course introduction The meaning of "normal" Prenatal genetic screening - Down	Ch 1 syndrome
Wed Jan 16	Cells Mitosis and mitotic cell cycle Stem cells	Ch 2
Fri Jan 18	Reproductive systems Meiosis	Ch 3: 41-43 3: 43-50
Mon Jan 21	Martin Luther King Day - no class	
Wed Jan 23	Development Birth defects Aging	Ch 3: 50-57 3: 58-60 3: 60-67
Fri Jan 25	Basic Genetics	Ch 4: 69-88
Mon Jan 28	Mendelian exceptions Mitochondrial inheritance Linkage	Ch 5: 89-97 5: 97-98 5: 98-106
Wed Jan 30	Sexual development Sex linked inheritance X-inactivation Genomic imprinting	Ch 6: 107-115 6: 115-123 6: 123-124 6: 124-130

Fri Feb 1 Exam 1 (Chapter I-5)

Mon	Feb 4	Multifactorial inheritance continuous traits/disease	Ch 7
Wed	Feb 6	Multifactorial inheritance threshold traits/disease	Ch 7
Fri	Feb 8	Behavior genetics	Ch 8
Mon	Feb 11	DNA structure and replication	Ch 9
Wed	Feb 13	Protein synthesis protein characterization transcription translation	Ch 10
Fri	Feb 15	Exam 2 (Chapters 6-I0)	
Mon	Feb 18	Control of Gene Expression	Ch 11
Wed	Feb 20	Gene mutation causes types	Ch 12: 213-228
Fri	Feb 22	Gene Families DNA Repair	Ch 12: 228-229 12: 230-237
Mon	Feb 25	Chromosomes structure variation	Ch 13
Wed	Feb 27	Down syndrome causes	Ch 13: 248-251 13: 256-258
Fri	Feb 29	Population genetics	Ch 14 (omit 270- 275)
Marc	h 1 - 9	Spring break	

Mon Mar 10	Forces of evolution	Ch 15
Wed Mar 12	Human origins mt DNA studies Y chromosome racial groups	Ch 16: 301-319
Fri Mar 14	Eugenics past present	Ch 16: 319-325
Mon Mar 17	Exam 3 (11-16)	
Wed Mar 19	Immunogenetics importance of cell surfaces blood types MHC	Ch 17: 327-331
	innate immune response adaptive immune response B cells T cells	17: 332-334 17: 334-338
Fri Mar 21	Good Friday - no class	
Mon Mar 24	Easter Monday - no class	
Wed Mar 26	Immunogenetics inherited immune deficiencie acquired immune deficiencie autoimmunity allergies vaccinations tissue/organ transplants MHC region of genome	Ch 17:338-352 es es
Fri Mar 28	Cancer genetics features of cancer history of cancer genetics cancer associated genes	Ch 18

oncogenes tumor suppressor genes

cancer models cancer diagnosis/treatmen causes of cancer cancer prevention	t
etic Technologies DNA sequencing patenting DNA amplifying DNA - PCR manipulating DNA recombinant DNA technolog	Ch 19 gy
etic technologies microarrays high throughput screening	Ch 19
fingerprinting	Ch 14:270-276
etic testing/counseling e therapy	Ch 20
roductive technologies	Ch 21
omics/proteomics	Ch 22
lent presentations/discussion	
lent presentations/discussion	
lent presentations/discussion	
	cancer diagnosis/treatment causes of cancer cancer prevention etic Technologies DNA sequencing patenting DNA amplifying DNA - PCR manipulating DNA recombinant DNA technolog etic technologies microarrays high throughput screening etic testing/counseling e therapy roductive technologies omics/proteomics

Final exam - unit exam 4 (during final exam period)

Tentative Laboratory Schedule

Week 1 (Jan 15)	Introduction to the microscope Karyotype analysis exercise Cystic fibrosis (case study) Introduction and evaluation of OMIM genetests NORD
Week 2 (Jan 22)	Slide study of mitosis Pedigree construction a genotype/phenotype exercise Computer sites: OMIM and genetests
Week 3 (Jan 29)	Meiosis slide study spermatogenesis oogenesis) pregancy related technologies -ultrasound -amniocentesis -PGD (preimplantation genetic diagnosis) Assign genetic problems
Week 4 (Feb 5)	Sex chromatin slide preparation procedure Genetic problems help session Case studies involving gender
Week 5 (Feb 12)	Isolation and characterization of DNA Construction of DNA models Evaluation of the genetic and environmental aspects of alcoholism Case study involving "fetal alcohol syndrome"
Week 6 (Feb 19)	Protein synthesis- construction of models and use of the genetic code chart Agarose electrophoresis experiment

demonstrating DNA separation

Week 7 (Feb 26)	Population genetics exercise - Hardy Weinberg analysis
Week 8 (March 3-7)	Spring Break
Week 9 (March 11)	Human evolution lab - evaluate skulls Construction of a phylogenetic tree Eugenics exercise - evaluate historical and current situations
Week 10 (March 18)	Dermatoglyphic analysis exercise- genetic evaluation of human fingerprint
Week 11 (March 25)	Genetic engineering lab - <i>E.coli</i> transformation experiment Video: Historical genetic documentary
Week 12 (April 1)	DNA fingerprinting (profiling) - history and hands-on technology exercise
Week 13 (April 8)	Genetic screening for PKU history and screening technologies Case study - PKU
Week 14 (April 15)	Genetic counseling methodology Assisted reproductive technologies
Week 15 (April 22)	TBD

Bio 192: *Heredity and Society* was designed as an alternative lecture and laboratory LinC F4 exposure (particularly as related to Biology 100 -*Principles of Biology* which has an important animal dissection component). The lectures focus on the narrower discipline of human genetics and associated societal concerns. The laboratory portion of the course contains exercises which demonstrate the scientific investigatory process, expose students to scientific equipment and human genetic technology, and foster awareness of genetic data bases relevant to human genetic diseases. The course could be taught in either the Fall or Spring semester. In the semesters when it has been taught, it has drawn students from a variety of majors and academic levels. It is not a course intended for biology majors; however, it could potentially be taken as a general elective. (There is a major course in Human Genetics which is more appropriate for them.) The course could be taught by a number of individuals in the biology department and does not require significant library and/or media resources.

The **catalog description** is: *Heredity and Society* is an applied human genetics course for non biology majors. It satisfies the F4 LinC graduation requirement. The course includes classical and current topics in human genetics such as single gene and polygenic traits and diseases, chromosomal syndromes, molecular (biochemical) genetics, population genetics, immunogenetics, and cancer genetics. Evaluation will include four unit exams, lecture and laboratory attendance and participation, involvement in case studies, and presentation of a short power point presentation on a selected human genetic disease.