Math 166
 Analytic Geometry and Calculus with Review-Part II Spring 2007

Instructor: N. Wetcher

Office: Room 223 PPHAC
Telephone Number: (610) 861-1335
e-mail address: mensw01 @ moravian.edu
Office Hours: T 10:10-11:00 am
F 10:30-11:30 am
or by appointment

Course Goals:

The students will

- review basic definitions and identities for trigonometric functions
- develop the rules for derivative of inverse trig functions and logarithmic functions
- apply the concept of derivative to solving problems including optimization, related rates and economics
- gain a better understanding of the graphs of functions by using calculus concepts
- find anti-derivatives of the basic functions
- explore the relationship between definite integrals and derivatives
- gain an appreciation of the Fundamental Theorems of Calculus
- find areas and distances using definite integrals
- use L'Hopital's rule to find limits of indeterminate forms

Course Materials:

Texts: Calculus, 5E(Early Transcendental SIngle Variable) by Stewart
A Companion to Calculus 2nd Edition_ by Ebersole, Schattschneider, Sevilla, Somers

Calculator: The TI 83+ calculator is recommended and will be used for presentations, but any comparable graphing calculator with which the student is familiar with is acceptable.

Attendance:

- Regular attendance is necessary in order to be most successful. Attendance will be taken and will be used when deciding borderline grades.
- There will be a 20% penalty for each day that a Graded Assignment is late.
- There will be no make-up for missed quizzes,
- Make-up tests are given only in extreme, pre-approved cases. If you have to miss a test it is your responsibility to contact me in advance.

Academic Honesty:

Please refer to Moravian's "Policy on Academic Honesty" that is outlined in the current Student Handbook.
Specifically, for this class

- you may use any notes, books or library sources for any homework assignment (graded or non-graded). You may also work with other students on these assignments, but, you must indicate those with whom you conferred as well as be responsible to explain all solutions by yourself.
- all tests and quizzes are to be completed by you alone, without the aid of books, notes or formula sheets unless specifically permitted by the instructor.
- graphing calculators will be required as indicated by the instructor for answering questions on assignments, tests and quizzes. However, a complete discussion as to how they were used may be required.

Special Considerations:

Appropriate accommodations can be made with testinc times, seating assignments, etc. for those atudents with legitimate learning and/or physical disabilities.

Evaluation and Grading:

Practice is vital for developing the required Calculus skills. It is expected that the student does all homework problems assigned. Some will be graded while the rest could be checked for completion.

The student will be evaluated on the basis of four tests, best four (out of five) quizzes, four problem sets, and a cumulative final exam. Attendance, class participation and effort will be used to decide borderline grades. Late assignments will be graded with a 20% reduction for each day that they are late.

The percent breakdown of the Final Grade is as follows.
Tests 50\%
Quizzes/Problem Sets 25\%
Final Exam 25\%

The Final Grade will be computed according to the following guideline.

Average	Grade	Average	Grade
$92-100 \%$	A	$72-77 \%$	C
$88-89 \%$	B+	$68-69 \%$	D+
$82-87 \%$	B	$62-67 \%$	D
$80-81 \%$	B-	$60-61 \%$	D-
$78-79 \%$	C+	$0-59 \%$	F

Math 166 Assignments

Topic

Angle measures
Definition and Evaluation of Trig Functions
Properties of Trig Functions
Domain, Range, and Graphs of Trig Functions
Combining Functions with Trig Functions
Derivatives of Trig Functions
One-To-One Functions
Inverse of a Function
Finding the Inverse
Derivatives of Inverse Trig Functions

TEST 1 (Tentatively January 31)

Definition and Properties of Logarithmic
Functions
Graphs of Logarithmic Functions
Solving Equations w/ Logarithmic Functions

Logarithm review

Derivatives of Logarithmic Functions
Setting Up Equations for Related Rates Problems

Problem-Solving Strategies for Related
Rates Problems
Related Rates
Tangent Line Approximation
The Differential
Linear Approximation of Differentials

Stewart CTC Assignment

8.A Worksheet

8.B Worksheet cont.
8.C 259: 2,3
8.D 265: 1,2
8.E 275-276: 1a,d

216: 1,3,5,9,21,23,35
233: 13
240: 7,17,25
14.A $\quad 359: 4$
14.B 366: 5
14.C 376: 1,5,6a-c 234: 42,43,49
15.A 385. 2,5,6
15.B 392: 6
15.C 396: 1,2

CTC 397: 1,2,3
249: 3,7,9,11,21,29,35,37,39,41
11.A 313:1,2, 3,4
11.B 319: 2,3 320: 3,4,5

260: 3,5,7,9,11,15,17
12.A 325 : 2
12.B 331 top: 4

267:5,15,17,21,23,25,27,29,31,33

TEST 2 (Tentatively February 20)

Topic

Extreme and Critical Values
Maximum and Minimum Values
The Mean Value Theorem
Solving Inequalities
Graphical Interpretation
How Derivatives Affect the Shape of
a Graph
of Curve Sketching
Calculus and Calculators
Setting Up Equations to Solve Extreme
Value Problems

Optimization Problems
Applications to Economics

TEST 3 (Tentatively March 28)
Anti-derivatives
Anti-differentiation as the Inverse
of Differentiation

Recognizing Anti-derivatives
Sigma Notation for Sums

Areas and Distances

The Definite Integral
Area Under a Curve as a Definite Integral
Other interpretations of the Definite Integral
The Fundamental Theorem of Calculus

Stewart CTC Assignment
16.A 410 \# 7a,d,f

286: $3,7,9,17,19,21,31,33,35,37$, 47,49, 51,53,59,61
4.2

17A
17.B

432-433: 1,2,3

304:1,3,11,13,33
4.4
4.5
4.6
4.7
4.8

Summary
Graphing With
330:1,3,9
16.B 414: 1,2,4,6(for 1,2,4)

336: 3,5,7,9,11,29
346: 5,7,11,13,15

358: 1-13odd, 19,21,23,25,27,29, 31,35,37,59,61
18.A

448-449: 1,3
18.B

453: 1,3

466-468
469-470: 3,5,6 Worksheet

378: 3,5,11,15,17,19
390: 1,5,17,29,33,43,47,49,55
20.A

491: 2,3,4
20.B

498-499:2a,c,,e,4
20.C 505: 2
$402: 1,5,7,9,19,21,23,25,27,29,35,37,39$

Topic	Stewart	CTC	Assignment
Indefinite Integrals: Total Change Theorem	5.4		$\begin{gathered} \text { 411: 5,7,9,11,17,19,23,33,45,47, } \\ 53,55 \end{gathered}$
TEST 4 (Tentatively April 23)			
Substitution for Indefinite Integrals		18-C	459: 3,4
The Substitution Rule	5.5		420: 1,3,5,7,9,17,21,25,49,51
Change of Variables in Definite Integrals		20.D	508: 1

FINAL EXAM (Time T.B.A.)

